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1|Introduction    

The proliferation of Internet of Things (IoT) devices has transformed modern networks, enabling smart cities, 

healthcare monitoring, industrial automation, and more. These devices generate vast amounts of data and 

require efficient network management to ensure seamless communication, reliability, and security. Traditional 

network management approaches often fail to handle IoT environments' dynamic, heterogeneous nature. AI 

offers promising capabilities for intelligent network management by leveraging Machine Learning (ML), Deep 

Learning (DL), and other data-driven decision-making and automation techniques [1]. 

2|Background and Related Work 

Network management for IoT encompasses tasks such as traffic routing, fault detection, security monitoring, 

and energy management. Conventional methods often involve rule-based systems and manual configurations, 

which are insufficient for large-scale, dynamic IoT networks. Recent research has explored the use of AI for 

automated network management. Techniques like Reinforcement Learning (RL) for resource allocation and 

neural networks for anomaly detection have shown significant potential. Studies highlight the limitations of 
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traditional methods, such as lack of scalability and adaptability, and underscore the advantages of AI-driven 

approaches. 

2.1|Challenges in IoT Network Management 

Scalability: the number of connected IoT devices is expected to reach billions, posing challenges in managing 

the network traffic and resource allocation. 

Data handling: IoT networks generate continuous data streams that require real-time processing and storage 

solutions. 

Energy efficiency: prolonging battery life in IoT devices while maintaining network performance is critical. 

Security and privacy: IoT networks are vulnerable to cyber-attacks, making it necessary to implement robust 

security measures. 

Dynamic network conditions: frequent changes in topology and variable network loads complicate 

management tasks [2]. 

2.2|AI Techniques for IoT Network Management 

Machine learning: ML techniques, such as supervised and RL, can predict network traffic patterns, optimize 

routing, and allocate resources dynamically [3]. 

Deep learning: DL models, including Convolutional Neural Networks (CNNs) and Recurrent Neural 

Networks (RNNs), can detect anomalies, predict failures, and perform real-time network monitoring. 

Fuzzy logic: fuzzy Logic is useful for handling uncertainty in decision-making processes, so fuzzy logic 

systems can adapt to variable network conditions. 

Genetic algorithms: these algorithms optimize complex problems in routing, resource allocation, and load 

balancing by evolving solutions over successive iterations. 

2.3|AI-Driven Network Management Architectures  

Centralized vs decentralized management: centralized management relies on a central AI controller, whereas 

decentralized management distributes decision-making across edge devices. 

Edge computing and AI: integrating AI at the network edge reduces latency by processing data closer to the 

source, enabling real-time decision-making [4]. 

Cloud-based Solutions: cloud computing supports large-scale data processing and AI model training, offering 

a centralized approach to managing multiple IoT networks [3]. 

Hybrid approaches: combining edge and cloud-based AI provides a balance between latency, computational 

power, and resource utilization [5]. 

2.4|Challenges and Limitations of AI in IoT Network Management 

Data quality and availability: AI models rely on high-quality datasets, which can be challenging to obtain due 

to incomplete or noisy data. 

Computational resource requirements: many IoT devices have limited computational resources, restricting 

deploying complex AI models. 

Ethical and privacy concerns: ensuring data privacy and addressing the ethical implications of AI decision-

making are essential for widespread adoption. 

Scalability of AI solutions: deploying AI across heterogeneous IoT networks with different protocols and 

standards presents integration challenges. 
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3|Future Directions 

Explainable AI: developing AI systems that provide transparent and understandable decisions for network 

administrators. 

Federated learning: using federated learning enables model training directly on IoT devices, preserving data 

privacy. 

Integration with 5G and beyond: leveraging new network technologies like 5G to enhance AI capabilities in 

latency and bandwidth. 

Adaptive AI systems: creating AI models that adapt to changing network conditions through continuous 

learning. 

4|AI-Based Algorithms for Network Management in IoT 

4.1|Reinforcement Learning for Dynamic Resource Allocation 

RL is suitable for managing dynamic resources in IoT networks by learning from environmental feedback. It 

helps optimize network configurations such as bandwidth allocation, device scheduling, and load balancing 

[6], [7]. 

 

Fig. 1. Reinforcement learning-based user authentication and dynamic resource allocation framework. 

Algorithm 1. Q-learning for resource allocation. 

I. Initialize: 

− Set Q-values Q(s, a) for all state-action pairs to zero. 

− Define the learning rate α, discount factor γ, and exploration rate ε. 

II. Repeat for each episode: 

− Observe the current states of the network, including metrics like bandwidth usage, device activity, and latency. 

− Choose an action (e.g., reallocate bandwidth, reroute traffic) based on the epsilon-greedy strategy: 
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− With probability ε, choose a random action. 

− Otherwise, choose the action that maximizes Q(s, a). 

− Execute the action, observe the reward r, and transition to the new state s'. 

− Update Q-value: 

III. End the episode when a stopping condition is met (e.g., a stable network state). 

IV. Convergence check: periodically evaluate the Q-values to check if they have converged. 

Fig. 2. Flowchart of the Q-learning algorithm for reinforcement learning. 

4.2|Convolutional Neural Networks for Anomaly Detection 

CNNs can detect anomalies in network traffic and sensor data by learning spatial patterns within time-series 

data from IoT devices [8]. 

Algorithm 2. CNN-Based anomaly detection [9]. 

I. Data collection: 

− Collect time-series data from IoT devices, including metrics such as CPU usage, memory consumption, and 

network traffic. 

II. Pre-processing: 

− Normalize the data to fit within a specific range. 

− Segment the data into fixed-length sequences for input to the CNN model. 

Q(s, a)  =  Q(s, a)  +  α [r +  γ max_{a′} Q(s′, a′)  −  Q(s, a)] −  Set s =  s′.  



AI-based network management for IoT devices 

 

48

 

  III. Model architecture: 

− Define a CNN architecture with layers such as convolutional layers (for feature extraction), pooling layers (for 

dimensionality reduction), and fully connected layers (for classification). 

IV. Training: 

− Train the CNN using a labeled dataset containing normal and anomalous examples. 

− Use loss functions such as binary cross-entropy if it’s a binary classification problem. 

V. Anomaly detection: 

− Predict the class of incoming data sequences using the trained model. 

− Flag sequences with a high probability of being anomalous for further investigation. 

VI. Evaluation: 

− Use precision, recall, and F1-score metrics to evaluate the model's performance. 

a.                                                                                                           b. 

Fig. 3. Dual-stage detection framework for baggage security; a. object detection stage classifies items into six 

categories, b. anomaly detection stage differentiates benign and anomalous objects. 

 

4.3|Genetic Algorithms for Network Optimization 

Genetic Algorithms (GAs) can solve optimization problems in IoT networks, such as routing and resource 

allocation, by mimicking natural selection [10]. 

Algorithm 3. GA for Optimizing Routing. 

I. Initialization: 

− Generate an initial population of routing paths, each represented as a chromosome. 

II. Fitness Evaluation: 

− Evaluate each chromosome based on a fitness function that measures path latency, bandwidth usage, and energy 

consumption. 

III. Selection: 

− Select pairs of chromosomes for crossover based on their fitness, with fitter chromosomes having a higher chance 

of selection. 
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IV. Crossover: 

− Perform crossover to create new offspring by combining parts of selected chromosomes. 

V. Mutation: 

− Introduce mutations by randomly altering genes in some offspring to maintain genetic diversity. 

VI. Replacement: 

− Replace the least fit individuals in the population with new offspring. 

VII. Termination: 

− Repeat the process for several generations or until a convergence criterion is met (e.g., fitness values stabilize). 

 

Fig. 4. Flowchart of a hybrid Neural Network and Genetic Algorithm approach for training optimization. 

5|Real-world Applications of AI in IoT Network Management 

5.1|Smart Cities 

AI-based IoT network management is crucial in smart cities, where diverse applications such as traffic control, 

environmental monitoring, and public safety require efficient coordination. 

Traffic management: AI algorithms use data from connected vehicles to predict traffic congestion and adjust 

traffic light timings in real time to improve flow. 

Environmental monitoring: AI analyzes data from air quality sensors and triggers alerts if pollution levels 

exceed safe limits, helping authorities respond promptly. 
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  Public safety: AI-driven video analytics detect unusual activity from surveillance cameras, alerting law 

enforcement to potential incidents. 

5.2|Industrial IoT 

Industrial settings leverage AI-based network management to optimize machine communication, prevent 

failures, and streamline production processes. 

Predictive maintenance: AI models predict equipment failures based on sensor data, allowing maintenance 

teams to perform repairs before a breakdown occurs, thus reducing downtime. 

Quality control: AI detects anomalies in manufacturing processes, such as variations in product dimensions 

or material defects, ensuring consistent quality. 

Energy optimization: AI optimizes energy consumption by adjusting machine activity schedules and 

regulating HVAC systems in response to real-time conditions. 

5.3|Healthcare Monitoring 

AI-based IoT network management in healthcare enables remote patient monitoring, emergency response, 

and hospital automation. 

Remote patient monitoring: AI analyzes vital signs data from wearable devices, detecting health anomalies 

and sending alerts to healthcare providers. 

Emergency response: in a detected health emergency, AI can prioritize network traffic for emergency services 

to ensure prompt response. 

Hospital automation: AI manages IoT devices within hospitals, such as connected medical equipment and 

environmental controls, to optimize resource use and enhance patient care. 

5.4|Agriculture 

AI-based network management supports smart farming, where IoT devices monitor soil, weather, and crop 

conditions. 

Precision farming: AI algorithms analyze data from soil moisture sensors, weather stations, and drones to 

optimize irrigation and fertilization schedules. 

Livestock monitoring: AI processes data from wearable sensors on livestock to monitor health, activity, and 

feeding patterns, helping farmers manage herds efficiently. 

Supply chain management: AI tracks produce from farm to market, optimizing transportation routes to 

reduce spoilage and ensure timely delivery. 

6|Conclusion 

AI-based network management for IoT devices represents a significant advancement in addressing the 

limitations of traditional approaches. By incorporating intelligent algorithms, networks can dynamically adapt 

to changing conditions, optimize resource utilization, and enhance security. Although challenges remain, the 

potential benefits of integrating AI with IoT networks make it a crucial area for future research and 

development. AI can transform IoT network management with continued innovation, enabling resilient, 

scalable, and efficient systems. 
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