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Abstract

Artificial Intelligence (AI) has transformed forensic facial sketching, introducing advanced deep learning architectures
for suspect identification in constrained-data environments. This literature survey systematically analyzes the state of
the art in Al-driven forensic facial sketching, identifying critical gaps across methodological, theoretical, and practical
dimensions. Methodologically, we highlight the lack of comparative studies across deep learning architectures (e.g.,
GANs, VAEs, diffusion models), the over-reliance on accuracy as the sole evaluation metric, and the insufficient
investigation of algorithmic robustness to noise and distortions. Theoretically, we identify gaps in understanding how
Al models interpret and reconstruct facial features from sparse witness descriptions, as well as in the limited research
on inference mechanisms with incomplete data. Practically, we note deficiencies in real-world scenario testing, user-
centric design for forensic practitioners, and system scalability for operational deployment. By synthesizing existing
literature, this survey not only identifies these interconnected gaps but also proposes future research directions to
develop more robust, efficient, and forensically applicable AI systems. Our analysis emphasizes the need for
standardized benchmarks, comprehensive evaluation protocols, and interdisciplinary collaboration to advance the
field.

Keywords: Forensic facial sketching, Deep learning architectures, Generative adversarial networks, Suspect
identification, Evaluation metrics.

1| Introduction

Forensic facial sketching represents a critical component of suspect identification systems, bridging the gap

between eyewitness descriptions and the generation of recognizable facial representations [1]. The evolution
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from traditional artist-rendered sketches to Al-driven computational systems has opened new possibilities for
law enforcement agencies worldwide [2]. These systems aim to transform verbal descriptions from
eyewitnesses or victims into facial representations that can aid in identifying suspects, with recent advances
in deep learning, particularly Generative Adversarial Networks (GANs), Variational Autoencoders (VAEs),
and diffusion models, significantly enhancing the photorealism and accuracy of computer-generated facial

composites [3].

Despite these technological advancements, significant research gaps persist across methodological,
theoretical, and practical dimensions, hindering the full potential of Al-driven forensic facial sketching
systems [4]. These gaps limit the adoption of these systems in real-world forensic settings and impede the
development of more effective suspect identification tools. Understanding these gaps is essential for directing
future research efforts and developing systems that are not only technically sophisticated but also forensically
valuable and practically implementable.

This literature survey provides a comprehensive analysis of the current research landscape in Al-driven
forensic facial sketching, with particular focus on identifying critical gaps across methodological, theoretical,
and practical domains. By systematically examining these gaps, this survey aims to establish a foundation for
future research directions that could address these limitations and advance the state of the art in forensic
facial sketching technology for suspect identification.

2| Methodology

This literature survey employed a structured approach to identify and analyze relevant research on Al-driven
forensic facial sketching systems. While not a systematic review following PRISMA guidelines, our
methodology incorporated systematic elements to ensure comprehensive coverage and critical analysis of the

literature.
2.1| Search Strategy

We conducted a comprehensive search across multiple academic databases, including IEEE Xplore, ACM
Digital Library, SpringerLink, ScienceDirect, and Google Scholar. The search was performed using
combinations of keywords and phrases such as Artificial Intelligence (Al), forensic facial sketching, deep
learning facial composite, GAN suspect identification, automated facial sketching, machine learning forensic
art, and Al eyewitness composite. The search period covered publications from 2010 to 2024 to capture the
evolution of the field from eatly machine learning approaches to current deep learning techniques.

2.2 | Inclusion and Exclusion Criteria

Studies were included based on the following criteria:
1. Focus on Al-driven approaches to forensic facial sketching or composite generation.
II. Published in peer-reviewed journals, conference proceedings, or academic books.
III. Written in English.
IV. Contained technical details about algorithms, architectures, or evaluation methodologies.
Exclusion criteria included:
1. Studies focusing solely on traditional artist-rendered sketches without Al components.
II. Non-technical articles or news reports.
III. Studies not directly related to forensic applications (E.g., general face generation without forensic context).

IV. Duplicate publications or preliminary versions of already included papers.
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2.3 | Selection Process

The initial search yielded 327 publications. After removing duplicates (N =42), 285 publications remained for
title and abstract screening. Two reviewers independently screened these publications, with disagreements
resolved through discussion. This process resulted in 156 publications for full-text review. Following detailed
examination, 89 publications were selected for inclusion in this survey based on their relevance, technical
contribution, and methodological rigor.

2.4 | Data Extraction and Analysis

For each included publication, we extracted information on:
I. Al architectures and algorithms employed.
II.  Evaluation methodologies and metrics.
III. Dataset characteristics and size.
IV. Reported performance and limitations.
V. Identified research gaps and future directions.

The extracted data were synthesized thematically to identify patterns, trends, and gaps across methodological,
theoretical, and practical dimensions. This synthesis serves as the basis for our analysis in the subsequent
sections.

3| Technical Overview of AI-Driven Forensic Facial Sketching
Systems

3.1| Evolution of AI Architectures

Al-driven forensic facial sketching has evolved significantly over the past decade, with several distinct
generations of architectures emerging:

Early machine learning approaches (2010-2015): initial systems employed traditional machine learning
techniques such as Principal Component Analysis (PCA), Independent Component Analysis (ICA), and
Support Vector Machines (SVM) for facial feature extraction and reconstruction [5]. These systems typically
operate by assembling pre-defined facial components based on witness descriptions, with limited ability to
generate novel facial features.

Deep learning revolution (2015-2018): the introduction of deep neural networks marked a significant
advancement, with Convolutional Neural Networks (CNNs) becoming the dominant architecture for feature
extraction and representation [6]. These systems demonstrated improved ability to capture complex facial
features and their relationships, though they often required large training datasets and struggled with
generating high-quality outputs from sparse descriptions.

Generative model era (2018-present): the current generation of systems leverages generative models —
particularly GANs, VAEs, and, more recently, diffusion models — to create photorealistic facial composites
[7]. These architectures have significantly improved the quality and diversity of generated sketches, enabling
more accurate representation of subtle facial features and better handling of incomplete input data.

3.2 | Dominant AI Architectures

GANS: GANs have become the most widely adopted architecture for forensic facial sketching, accounting
for approximately 65% of recent publications in the field [8]. The adversarial training process, involving a
generator and discriminator network, enables the creation of highly realistic facial images. Key GAN variants
applied in forensic contexts include:
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I. Conditional GANs (CGANSs): allow control over generated outputs by incorporating witness descriptions
as conditioning information [9].

II. Progressive GANs: generate high-resolution images through a multi-scale training process [10].
III.  Style-based GANs (StyleGAN): enable fine-grained control over facial features and attributes [11].

VAEs: VAEs represent approximately 20% of current systems, offering advantages in terms of training
stability and the ability to learn meaningful latent representations of facial features [12]. VAE-based systems
typically employ encoder-decoder architectures, with the encoder mapping witness descriptions to a latent
space and the decoder generating facial images from this representation.

Diffusion models: Emerging as a promising alternative, they have gained attention in the past two years and
now comprise approximately 10% of recent publications [13]. These models generate images through an
iterative denoising process, demonstrating superior performance in handling noisy or incomplete input data
compared to earlier architectures.

Hybrid approaches: The remaining 5% of systems employ hybrid architectures that combine elements from
multiple approaches to leverage their respective strengths [14]. Common combinations include GAN-VAE
hybrids for improved training stability and diffusion-GAN hybrids for enhanced image quality.

3.3 | Technical Challenges and Innovations

Data scarcity: A persistent challenge in forensic facial sketching is the limited availability of paired witness
descriptions and facial images. Recent innovations include:

I. Few-shot learning techniques: enabling model training with limited examples [15].
II. Data augmentation strategies: synthetic data generation to expand training datasets [16].
III. Transfer learning: leveraging pre-trained models on general facial datasets [17].

Feature control: achieving precise control over individual facial features based on witness descriptions remains
challenging. Notable technical solutions include:

1. Attribute-based loss functions: penalizing deviations from specified facial attributes [18].
II.  Attention mechanisms: focusing on relevant facial regions during generation [19].
III. Hierarchical generation: building facial composites feature-by-feature according to witness priorities [20].

Evaluation methodologies: the field lacks standardized evaluation protocols, leading to inconsistent
performance reporting. Recent technical innovations include:

1. Multi-metric evaluation frameworks: Combining traditional metrics with forensic-specific measures [21]
II. Human-in-the-loop evaluation: Incorporating forensic artist assessments [22].

III. Adversarial evaluation: Testing system robustness against challenging inputs [23].

Table 1. Comparison of Al architectures for forensic facial sketching.

Architecture Training Stability Image Quality Control Precision Data Efficiency Computational Cost

Traditional ~ High Low Medium High Low

ML

CNN-based Medium Medium Medium Medium Medium
VAE High Medium Low Medium Medium
GAN Low High High Low High
Diffusion Medium Very high Medium Low Very high

Hybrid Medium High High Medium High
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4| Methodological Gaps

4.1| Inadequate Comparative Studies

The literature reveals a significant paucity of comparative studies evaluating the relative performance of
different algorithmic approaches in Al-driven forensic facial sketching. Most existing research focuses on
demonstrating the efficacy of specific algorithms in isolation rather than systematically comparing them
against alternative approaches [24]. This limitation is particularly evident in the lack of studies that directly
compare deep learning algorithms against traditional machine learning methods and conventional artist-
rendered techniques under controlled conditions.

Several studies have examined individual algorithmic approaches, such as GAN-based systems [25], VAE
implementations [26], or evolutionary algorithms [27]. However, these studies typically evaluate their
proposed methods against baseline approaches or eatlier versions of the same technology, rather than against
fundamentally different algorithmic paradigms. This methodological limitation makes it difficult to determine
which approaches are most suitable for specific forensic scenarios or to understand the trade-offs between

different techniques in terms of accuracy, computational efficiency, and practical utility.

Table 2 summarizes the current state of comparative research in Al-driven forensic facial sketching,
highlighting the scarcity of studies that directly compare different algorithmic approaches.

Table 2. Comparison of algorithmic approaches in Al-driven forensic facial sketching.

Algorithm Type Number Comparative Common Key Limitations
of Studies  Studies Evaluation Metrics

GAN-based systems 42 3 (7T%) Accuracy, SSIM, Limited comparison with non-
FID GAN methods

VAE implementations 28 2 (7%) Accuracy, Small-scale evaluations only
reconstruction error

Evolutionary algorithms 15 1. (7%) Accuracy, Outdated benchmarks used
convergence, rate

Traditional ML methods 23 4(17) Accuracy, precision,  Limited modern comparisons
recall

Artist rendered 19 5(206) Recognition rate, Subjective evaluation methods
similarity

The absence of comprehensive comparative studies has practical implications for forensic practitioners who
must select appropriate systems for their specific needs. Without precise comparative data, agencies may
adopt systems based on marketing claims rather than empirical evidence of relative performance [28].
Furthermore, the lack of comparative evaluation hinders the identification of best practices and the
development of standardized protocols for forensic facial sketching in suspect identification systems.

4.2 | Need for Improved Evaluation Metrics

Current research in Al-driven forensic facial sketching systems predominantly relies on accuracy as the
primary metric for evaluating system performance [2]. While accuracy provides valuable information about a
system's ability to generate recognizable facial representations, it fails to capture the multifaceted nature of
forensic utility. The over-reliance on this single metric limits our understanding of system performance across
relevant dimensions in forensic contexts.

A more comprehensive evaluation framework should incorporate additional metrics such as precision, recall,
F1 score, and Area Under the Curve (AUC) to provide a more nuanced assessment of system performance
[29]. These metrics could help distinguish between different types of errors and provide insights into how
systems perform across various demographic groups, facial feature types, and input conditions.
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The current approach focuses on a single metric (accuracy), whereas a comprehensive framework would
incorporate multiple metrics, including accuracy, precision, recall, F1, AUC, robustness, efficiency, and
usability. This multi-dimensional evaluation would provide a more complete assessment of system

performance and forensic utility.

Furthermore, the field lacks standardized evaluation protocols that enable meaningful compatisons across
studies and systems. The lack of standard benchmarks, datasets, and evaluation criteria makes it difficult to
synthesize findings across studies and establish clear performance standards for forensic applications [30].
This methodological gap significantly impedes progtess in the field by limiting the ability to build on previous
research systematically.

4.3 | Limited Studies on Algorithm Robustness

The robustness of Al-driven forensic facial sketching systems against various forms of noise and distortions
in input data represents another significant methodological gap in current research [31]. Eyewitness
descriptions are inherently subjective, incomplete, and potentially distorted by factors such as stress, memory
decay, and cross-racial identification challenges [32]. However, most existing systems are evaluated under
relatively ideal conditions that do not adequately reflect the complexity and variability of real-world forensic
scenarios.

Research examining how different algorithms perform under incomplete descriptions, contradictory
information, or ambiguous input parameters is notably limited [33]. Similarly, studies investigating the effects
of different types of noise in input data—such as imprecise spatial relationships, inconsistent feature

descriptions, or temporal inconsistencies in witness accounts—are scarce in the literature.

Table 3 summarizes the types of robustness testing that are currently lacking in the literature and their

importance for forensic applications.

Table 3. Robustness testing gaps in Al-driven forensic facial sketching.

Robustness Current Research Forensic Key Research Questions
Dimension Coverage Importance
Input noise tolerance ~ Limited (12% of studies) ~ High How do systems perform with
ambiguous witness descriptions?
Cross-demographic Minimal (8% of studies) Critical Are systems equally effective across
performance ethnicities, ages, and genders?
Temporal consistency ~ Very limited (5% of Moderate Can systems maintain consistency in
studies) the face of evolving witness
accounts?
Environmental Limited (17% of studies) ~ High How do lighting, angle, and image
variability quality affect performance?
Adversarial resistance  Very limited (3% of Emerging Can systems withstand intentional
studies) attempts to mislead?

This methodological gap has significant implications for the reliability of these systems in practical forensic
applications. Without a thorough understanding of algorithm robustness under challenging conditions,
practitioners cannot assess the confidence they should place in system outputs or determine appropriate
protocols for verifying results [23]. Furthermore, the lack of robustness evaluation limits our understanding
of how different algorithms might be combined or adapted to improve performance in real-world suspect
identification scenatrios.

5| Theoretical Gaps
5.1| Insufficient Understanding of the Al-Face Sketching Relationship

Despite significant advances in the technical implementation of Al-driven facial sketching systems, the
theoretical understanding of how these systems interpret and recreate human facial features remains limited
[34]. Most research focuses on empirical demonstrations of system performance rather than developing
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theoretical frameworks that explain the underlying principles of facial representation and generation in Al

systems.

The literature reveals a particular lack of theoretical understanding regarding how Al systems capture and
represent the complex interrelationships between facial features [35]. Human faces exhibit intricate
correlations among features—such as the relationships between eye shape, nose structure, and jawline—that
contribute to overall facial appearance and recognizability. However, current Al systems often treat facial
features as relatively independent components, potentially missing critical holistic aspects of facial

representation.

Current Al approaches typically employ feature-based processing, treating facial components (eyes, nose,
mouth, ears, hair) independently. However, a theoretical gap exists in understanding holistic facial
representation, which would involve modeling interconnected feature networks and contextual factors. This
holistic understanding is needed to capture the complex relationships between facial features and their cultural

and contextual influences.

Furthermore, there is limited theoretical work examining how different Al architectures—such as GANS,
VAEs, and diffusion models—differentially capture and represent facial features and their relationships [30].
This theoretical gap hinders the development of more sophisticated algorithms that could better model the
complex nature of human facial appearance and improve the forensic utility of generated sketches for suspect

identification.
5.2 | Lack of Research on Al Inference

The process by which Al systems make inferences and predictions based on limited or incomplete data
represents another significant theoretical gap in the literature [37]. In forensic facial sketching scenarios, Al
systems must often generate complete facial representations from sparse, ambiguous, or potentially
contradictory witness descriptions. However, the theoretical foundations of how these systems perform such
inference tasks remain pootly understood.

Current research provides limited insight into how different Al architectures handle uncertainty, fill in missing
information, or resolve inconsistencies in input data [38]. This theoretical gap is particulatly problematic given
the high-stakes nature of forensic applications, where the accuracy and reliability of generated sketches can
have significant consequences for investigations and legal proceedings.

Furthermore, there is insufficient theoretical understanding of how Al systems balance between fidelity to
input descriptions and adherence to anatomical and statistical norms of human facial appearance [39]. This
balance is critical in forensic applications, where sketches must both accurately reflect witness descriptions
and produce plausible facial representations. Without a stronger theoretical foundation in this area, it is
challenging to develop systems that can reliably navigate this fundamental tension in suspect identification
contexts.

6 | Practical Application Gaps

6.1| Limited Research on Real-World Application

The literature reveals a significant gap between laboratory evaluations of Al-driven forensic facial sketching
systems and their performance in real-world forensic scenarios [40]. Most existing studies evaluate systems
under controlled conditions using standardized datasets and metrics that may not adequately reflect the

complexity and variability of actual forensic applications.

Research examining system performance under different lighting conditions, camera angles, and reference
image qualities is notably limited [41]. Similarly, studies investigating how these systems perform with
witnesses from different demographic backgrounds, cultural contexts, or levels of description ability are
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scarce in the literature. This gap is particularly significant given the diverse range of conditions under which
forensic facial sketching systems must operate in practice for suspect identification.

Table 4 summarizes the key real-world application gaps identified in the literature and their implications for

forensic practice.

Table 4. Real-world application gaps and implications.

Application Current Research Practical Implications  Critical Research Questions

Dimension Coverage

Environmental Limited (18% of studies) Reduced reliability in How do systems perform with

variability field conditions poor lighting, angles, and
distances?

Cross-demographic ~ Minimal (10% of studies) Potential bias in suspect  Are systems equally effective

performance identification across ethnicities, ages, and
genders?

Longitudinal Very limited (5% of Unknown sustainability ~ How do systems perform with

performance studies) over time prolonged use and evolving cases?

Integration with Limited (15% of studies) Implementation How do systems integrate with

workflows challenges existing forensic processes?

Legal admissibility Minimal (7% of studies) Uncertain standing in What standards are needed for

court legal acceptance?

Furthermore, there is limited research examining the long-term performance and reliability of these systems
in operational forensic settings [42]. Most studies focus on short-term technical evaluations rather than
longitudinal assessments of how these systems integrate into forensic workflows, adapt to different case types,

or evolve as practitioners gain experience with them.
6.2 | Absence of User-Centric Research

A critical gap in the literature is the lack of user-centric research examining the usability and practical utility
of Al-driven forensic facial sketching systems from the perspective of forensic artists and law enforcement
officials [43]. Most studies focus on technical performance metrics rather than human factors that determine

whether and how these systems are actually used in practice.

Research examining how forensic artists interact with Al systems, how they integrate algorithmic outputs into
their workflows, or how they balance between automated suggestions and their own expertise is notably
limited [44]. Similarly, studies investigating how law enforcement officials interpret and use Al-generated
sketches in investigations are scarce in the literature.

This user-centric research gap has significant implications for the design and implementation of Al-driven
forensic facial sketching systems. Without a clear understanding of user needs, preferences, and workflows,
system developers may create technically sophisticated tools that fail to address practical requirements or fit
seamlessly into existing forensic processes [45]. This misalignment between technical capabilities and user
needs can significantly limit the adoption and impact of these systems in real-world settings for suspect
identification.

6.3 | Scalability and Efficiency

The scalability and efficiency of Al-driven forensic facial sketching systems represent another significant
practical gap in the literature [43]. Most research focuses on demonstrating proof-of-concept systems or
optimizing performance on relatively small datasets, with limited attention to how these systems would
perform at scale in operational forensic environments.
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Research examining the computational requirements of different algorithms —such as their processing times
for different types of inputs or their resource utilization across different hardware configurations — is notably
limited [46]. Similarly, studies investigating how these systems perform when accessing and processing large

facial databases—such as those maintained by law enforcement agencies—are scarce in the literature.

Current research focuses on small-scale performance (single case, limited dataset, ideal conditions). In
contrast, operational reality demands large-scale requirements (multiple cases, massive database, variable
resources, real-time needs, resource constraints, network integration). Key efficiency gaps include processing
time (current systems take minutes to hours vs. operational need of seconds to minutes), resource
requirements (high-end hardware vs. standard forensic equipment), database integration (limited research on
integration with existing law enforcement databases), and network performance (unstudied performance in

distributed forensic environments).

This scalability and efficiency gap has significant implications for the practical deployment of Al-driven
forensic facial sketching systems. Without a clear understanding of their computational requirements and
performance characteristics at scale, forensic agencies cannot effectively plan for the infrastructure, training,
and support needed to implement these systems in operational settings [47]. Furthermore, the lack of research
on efficiency optimization limits our understanding of how these systems could be adapted for resource-
constrained environments or real-time suspect identification applications.

7| Critical Discussion

The methodological, theoretical, and practical gaps identified in this survey are interconnected and mutually
reinforcing. The inadequate comparative studies and over-reliance on limited evaluation metrics
(Methodological gaps) contribute to a poor understanding of how different algorithms perform under vatious
conditions, which in turn limits the development of robust theoretical frameworks for Al-face sketching
relationships (theoretical gap). Similarly, the lack of user-centric research and real-world application studies
(practical gaps) means that theoretical insights are not adequately tested or refined in authentic contexts,

perpetuating a cycle where systems may be technically sophisticated but forensically limited.

These gaps hinder the advancement of forensic facial sketching systems. Integrated research that addresses
methodological, theoretical, and practical dimensions—such as comparative studies with comprehensive
metrics—can yield deeper technical insights and stronger theoretical foundations.

The identified gaps underscore the importance of collaboration among computer scientists, forensic
practitioners, cognitive psychologists, and human-computer interaction specialists. Such interdisciplinary
efforts can ensure that technological developments are firmly grounded in theoretical understanding and

practical needs, resulting in systems that are effective, reliable, and valuable for suspect identification.
8| Conclusion and Future Research Directions

This literature survey has identified critical research gaps across methodological, theoretical, and practical
dimensions in Al-driven forensic facial sketching systems for suspect identification. Addressing these gaps is
essential for advancing the field and developing systems that can make meaningful contributions to forensic
investigations.

Based on the gaps identified, several promising directions for future research emerge:

1. Comparative studies of various Al and traditional techniques: rigorous comparative evaluations of different
algorithmic approaches under standardized conditions would provide valuable insights into their relative
strengths, weaknesses, and suitability for different forensic scenatios.

II. Development of new evaluation metrics: creating comprehensive evaluation frameworks that incorporate
multiple metrics beyond accuracy would enable more nuanced assessments of system performance and
facilitate meaningful comparisons between different approaches.
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III.  Studies exploring the theoretical basis of the Al-face sketching relationship: theoretical reseatch examining

how Al systems interpret and represent facial features and their relationships could inform the development

of more sophisticated algorithms that better capture the complex nature of human facial appearance.

IV. Research on the real-world application and usability: user-centered studies examining how these systems

perform in actual forensic scenarios and how practitioners interact with them would help ensure that technical

advances translate into practical value for suspect identification.

V. Studies focusing on optimization and scalability: research addressing the computational efficiency and

scalability of these systems would facilitate their deployment in operational forensic settings and enable their

use in resource-constrained environments.

By addressing these research directions, the field can develop Al-driven forensic facial sketching systems that

are not only technically sophisticated but also theoretically grounded, forensically valuable, and practically

implementable. Such systems have the potential to enhance law enforcement agencies' capabilities

significantly and to contribute to more effective and just suspect identification processes.
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